

Research on Student Learning

Although most students believe that scientific knowledge changes, they typically think changes occur mainly in facts and mostly through the invention of improved technology for observation and measurement. They do not recognize that changed theories sometimes suggest new observations or reinterpretation of previous observations. [1]

Students of all ages find it difficult to distinguish between a theory and the evidence for it, or between description of evidence and interpretation of evidence. [2] Some research suggests students can start understanding the distinction between theory and evidence after adequate instruction, as early as middle school. [3]

References

- [1] Aikenhead, G.S. (1987). High school graduates' beliefs about science-technology-society III. Characteristics and limitations of scientific knowledge. *Science Education*, 71, 459-487.
- [2] Lederman, N., O'Malley, M. (1990). Students' perceptions of the tentativeness in science: Development, use, and sources of change. *Science Education*, 74, 225-239.
- Waterman, M. (1983). Alternative conceptions of the tentative nature of scientific knowledge. In Novak, J. (Ed.), *Proceedings of the international seminar misconceptions in science and mathematics* (pp. 282-291).
- [2] Allen, R.D., Statkiewitz, W.R., Donovan, M. (1983). Student perceptions of evidence and interpretations. In Novak, J. (Ed.), *Proceedings of the international seminar: Misconceptions in science and mathematics* (pp. 79-83).
- Kuhn, D. (1991). *The skills of argument*. Cambridge University Press.
- Kuhn, D. (1992). Thinking as argument. *Harvard Educational Review*, 62, 155-178.
- Roseberry, A., Warren, B., Conant, F. (1992). *Appropriating scientific discourse: Findings from language minority classrooms*.
- [3] Roseberry, A., Warren, B., Conant, F. (1992). *Appropriating scientific discourse: Findings from language minority classrooms*.